Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4304, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474503

RESUMO

Climate change has been associated with both latitudinal and elevational shifts in species' ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species' traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species' range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species' ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting.


Assuntos
Aves , Mudança Climática , Animais , Ecossistema
2.
Animals (Basel) ; 12(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428454

RESUMO

Studying current and future geographic distribution is essential for conserving endangered species such as the Boreal Owl and Eurasian Pygmy Owl. The main aim of this study was to determine the potential distribution of both species in the Balkan Peninsula by using spatial distribution models (SDMs) in MaxEnt. We used data from field surveys, the scientific and grey literature, and an online database. We considered the current time and two future periods, 2041-2060 and 2061-2080. For future periods, we included different climate scenarios (SSP 126, 245, 370, and 585) in studying the potential geographic distribution of both species. We identified two types of potential future refugia for species: in situ and ex situ. Our study shows the highly suitable area for the Boreal Owl increased during the 2041-2060 period compared with the current area in all scenarios, except in SSP 585. However, during the 2061-2080 period, the highly suitable areas contracted. For the Eurasian Pygmy Owl, highly suitable areas decreased during 2041-2060, but during the 2061-2080 period, it was larger than the current area. Our study is of importance for conservation and preserving areas of potential distribution and refugia for Boreal and Eurasian Pygmy Owls in the face of climate change.

3.
Glob Chang Biol ; 28(14): 4276-4291, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441422

RESUMO

Identifying climate refugia is key to effective biodiversity conservation under a changing climate, especially for mountain-specialist species adapted to cold conditions and highly threatened by climate warming. We combined species distribution models (SDMs) with climate forecasts to identify climate refugia for high-elevation bird species (Lagopus muta, Anthus spinoletta, Prunella collaris, Montifringilla nivalis) in the European Alps, where the ecological effects of climate changes are particularly evident and predicted to intensify. We considered future (2041-2070) conditions (SSP585 scenario, four climate models) and identified three types of refugia: (1) in-situ refugia potentially suitable under both current and future climate conditions, ex-situ refugia suitable (2) only in the future according to all future conditions, or (3) under at least three out of four future conditions. SDMs were based on a very large, high-resolution occurrence dataset (2901-12,601 independent records for each species) collected by citizen scientists. SDMs were fitted using different algorithms, balancing statistical accuracy, ecological realism and predictive/extrapolation ability. We selected the most reliable ones based on consistency between training and testing data and extrapolation over distant areas. Future predictions revealed that all species (with the partial exception of A. spinoletta) will undergo a range contraction towards higher elevations, losing 17%-59% of their current range (larger losses in L. muta). We identified ~15,000 km2 of the Alpine region as in-situ refugia for at least three species, of which 44% are currently designated as protected areas (PAs; 18%-66% among countries). Our findings highlight the usefulness of spatially accurate data collected by citizen scientists, and the importance of model testing by extrapolating over independent areas. Climate refugia, which are only partly included within the current PAs system, should be priority sites for the conservation of Alpine high-elevation species and habitats, where habitat degradation/alteration by human activities should be prevented to ensure future suitability for alpine species.


Assuntos
Mudança Climática , Refúgio de Vida Selvagem , Biodiversidade , Ecossistema , Previsões , Humanos
4.
Glob Chang Biol ; 26(3): 1212-1224, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31804736

RESUMO

Interspecific interactions are crucial in determining species occurrence and community assembly. Understanding these interactions is thus essential for correctly predicting species' responses to climate change. We focussed on an avian forest guild of four hole-nesting species with differing sensitivities to climate that show a range of well-understood reciprocal interactions, including facilitation, competition and predation. We modelled the potential distributions of black woodpecker and boreal, tawny and Ural owl, and tested whether the spatial patterns of the more widespread species (excluding Ural owl) were shaped by interspecific interactions. We then modelled the potential future distributions of all four species, evaluating how the predicted changes will alter the overlap between the species' ranges, and hence the spatial outcomes of interactions. Forest cover/type and climate were important determinants of habitat suitability for all species. Field data analysed with N-mixture models revealed effects of interspecific interactions on current species abundance, especially in boreal owl (positive effects of black woodpecker, negative effects of tawny owl). Climate change will impact the assemblage both at species and guild levels, as the potential area of range overlap, relevant for species interactions, will change in both proportion and extent in the future. Boreal owl, the most climate-sensitive species in the guild, will retreat, and the range overlap with its main predator, tawny owl, will increase in the remaining suitable area: climate change will thus impact on boreal owl both directly and indirectly. Climate change will cause the geographical alteration or disruption of species interaction networks, with different consequences for the species belonging to the guild and a likely spatial increase of competition and/or intraguild predation. Our work shows significant interactions and important potential changes in the overlap of areas suitable for the interacting species, which reinforce the importance of including relevant biotic interactions in predictive climate change models for increasing forecast accuracy.


Assuntos
Mudança Climática , Estrigiformes , Animais , Ecossistema , Florestas , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...